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1. Introduction 

The overall purpose of the Ultrasonic Physical Modeling Program at the PvOcU- 

well International Science Center is to model seismic wave propagation in the Earth 

using ultrasonic wave propagation in scale laboratory models. By using well-calibrated 

sources and receivers, our hope is to shed light on the effects of complex structure and 

geology on the propagation of seismic waves, and thus aid the national research effort in 

seismic monitoring of nuclear explosions. The intent is to complement numerical model- 

ing, providing insight and guidance in complex situations where such modeling may not 

yet be feasible, owing to limitations in computer power. 

In this report, we address the general problem of a nuclear explosion source re- 

gion which has material properties significantly different from those of the surrounding 

seismic wave propagation medium. Such a situation exists, for example, in the case of 

explosions set off in Yucca Flat at the Nevada Test Site. The existence of a source 

region with differing material properties from the surrounding medium can have 

considerable effects on recorded surface wave amplitudes, as has been shown by some 

numerical studies (e.g., Regan and Glover, 1985). This in turn has implications for yield 

estimation, and possibly for discrimination. 

2. The Receiver 

It is absolutely imperative in a study of this kind to have a receiver with a 

well-known response, w'e use an NBS-iype conical transducer (Proctor 1980, 1982a,b) 

manufactured by Industrial Quality, Inc.; it is shown in Fig. 1. This transducer is a verti- 

cal component displacement sensor with a 1 mm contact area, and a very flat response. 

The element is piezoceramic, and it is coupled to a large brass backing which effectively 

eliminates resonances, as well as minimizing coherent reflections back into the element. 

Figure 2 shows typical response curves for this type of transducer, sent to us by NBS. 

The response is flat enough that when we look at a signal from this transducer, we can 

consider that we are looking essentially at raw vertical component displacement. 

1 
C8682D/sn 



mm 

SC37734 

Fig.  1       The NBS-type conical transducer used in this study, showing the point-like 
probe. 

3. The Source 

Just as important as having a well-characterized receiver is having a well 

characterized source. The source we use is a simple one, but it is quite effective. Basi- 

cally, we achieve a step-function point unloading of the surface by breaking a pencil lead 

on it. This is a variant of the well-known breaking-glass-capillary source used by the 

NBS, and is discussed in detail by Hsu and Hardy (1978). Figure 3 shows a picture of the 

source assembly, and Fig. 4 shows the source time function of the breaking pencil lead, 

obtained via deconvolution by Hsu and Hardy. The apparent noisiness in the response is 

due to the deconvolution process. The source approximates a step function; actually it is 

a ramp, but the rise time of the ramp is less than 1 ys. 

4. Lamb's Problem 

Figure 5 shows the result of a measurement made by setting off the source on 

the gabbro "ha If space", and recording the signal received by the transducer 200 mm away 

C8682D/sn 
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Fig. 2      Typical displacement response curves for the NBS-type conical transducer, 
a) Amplitude, (b) Phase. The receiver is close to a true displacement sensor. 
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Fig. 3 

Fig.'» 

The pencil-lead source used in this study. Electrical contact is broken when 
the pencil lead breaks, triggering the recording system. The pencil-lead source 
corresponds to step function unloading of the surface. 

10 
TIME,   (iSEC 

Source-time function of a pencil lead source, obtained by Hsu and Hardy (1978) 
by deconvolution. Some spurious structure has been introduced by the decon- 
volution. 
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(the standard distance for all the measurements presented in this report). The displace- 

ment record is essentially a solution of the classic Lamb's problem (see e.g., Miklowitz, 

1978; Mooney, 1974; Breckenridge et al, 1975) for a point force on a surface. Figure 5 

shows, for comparison, the result of Boler et al, (1984) for a similar setup, using a break- 

ing-glass-capillary source and a true displacement transducer. The results are very simi- 

lar in appearance to ours. Boler et al include the theoretical response computed from 

Lamb's solution. The first arrival P wave is very small in the theoretical solution, and is 

very small in Boler et al's measurements. In our results, there is only a hint of it, as a 

minor inflection before the onset of the large signal. The large signal observed in both 

our record and in Boler et al's is, of course, the S wave followed by the Rayleigh wave. 

5. The Cylindrical Graben Model 

As a first step toward; studying this problem, we have studied a cylindrical low 

velocity "graben," or plug, embedded in a high velocity medium (Fig. 6). The high veloc- 

ity medium is a fine-grained gabbro with Vp = 6.2 km/s, Vs = 3.6 km/s, and VR = 

3.3 km/s. The plug is filled with lower velocity materials, whose properties are shown in 

Table 1. 

Table 1 

Properties of Modeling Materials 

Longitudinal 
Velocity 

Material                  Vp, km/s 

Shear 
Velocity 
Vs, km/s 

Rayleigh 
Velocity 

VR, km/s 

Poisson's 
Ratio 

V 

Density 
P9 g/cc 

Crystalbond 504            2.407 
(Aremco Prods. Inc.) 

1.096 1.01 0.369 1.32 

HPAL3                           3.287 1.742 1.61 0.305 2.01 

Gabbro                          6.200 3.623 3.33 0.240 2.97 
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HALFSPACE MEASUREMENT 

TIME, .uSEC 

BOLER etal., 1984: 

Fig. 5      Signal observed by actuating the source on the gabbio "halfspace."   Similar 
signals obtained by Boler et al (1984) are shown for comparison. 
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Cylindrical "Graben" 
Low Velocity 

Gabbro "Halfspace" 
Vp = 6.2 
Vs = 3.6 
VR = 3.3 

Fig. 6 The model of a cylindrical graben filled with low velocity material, embedded 
in a fine-grained gabbro "ha If space." 

It is important to have a good idea of the scale factors involved. Taking Yucca 

Flat as a rough guideline, we may say that a graben of interest in the Earth is roughly 

Le = 20 km in diameter. If the source material in the Earth has a Rayleigh wave velocity 

VR =1.2 km/s, then a 20 s Rayleigh wave in the Earth has a wavelength xR
e = 2H 

km ..L6. Now, the model graben has a diameter Lm of 13 mm. We would like to know 

the frequency in the model of the Rayleigh wave analogous to a 20 s Rayleigh wave in 

the Earth. The wavelength of this analogous wave in the model graben must be roughly 

equal to the graben diameter, i.e., xR
m .L™. Since VR

m ranges from roughly 1 to 

1.6 km/s, this means that the frequency ranges from roughly'80 to 120 kHz, depending on 

the material in the graben. Hence, Rayleigh waves of 80 to 120 kHz in the model are 
analogous to 20 s Rayleigh waves in the Earth. 
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5.1 Source in Graben, Centered 

Figure 7 compares the Salfspace response discussed above to the displacement 

signal obtained when the source is set off at the surface of the cylindrical graben, in the 

center. The graben is filled with Crystalbond 504 (also referred to as "crystal wax" in 

the figures), a material with significantly slower velocities than gabbro (see Table 1). 
The signal is quite complex, with a large amount of ringing. 

HALFSPACE MEASUREMENT 

rwwA"y*i^«w,VK*«(«wvi 
\rWV'->,*-i*^V*vf*'f^^ 

20 
TIME,   uSEC 

SOURCE AT GRABEN CENTER 
GRABEN FILL = CRYSTAL WAX 

v^^.Wi if^i^ 

20 

TIME,  jiSEC 

Fig. 7 
Sffthi ! halfsPace S1gnal <also shown in Fig. 5), with the signal observed 
ÄaÄ ?^CS 1S af "ated at the «nter of the surface of the cylindrical plug 
vlrtir^l 1led mnth ^talbond 504. Source-receiver distance is 200 mm8 

Vertical scale is 100 mV per division. 

8 
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Energy which, when the source is set off on the halfspace, goes downward and 

is not recorded at the surface, is now trapped and redirected by the graben structure. 

Figure 8 compares the results from a centered source in the graben for two 

different fill materials. The top trace is a copy of the signal discussed immediately 

above, where the graben is filled with Crystalbond 50^. The bottom trace is for a graben 

filled with HPAL3, an aluminum-filled resin with faster velocities than Crystalbond 504, 

but slower velocities than gabbro. As might be expected, the amplitude of the ringing is 

smaller than in the case of Crystalbond 504. As the material property contrast increases 

between the graben and the surrounding medium, the observable effects of ringing appear 
to increase. 

MMn-frA^S^WV^' W^:^^ 

20 
    GRABEN FILL = CRYSTAL WAX 

TIME,   uSEC 

* irv;«,ri'/«Ty'"iTyMO'"AvV( 

20 

^^^^-v-^AM^^^^v./^' V-( 

TIME,   uSEC 

GRABEN FILL = HPAL3 
(FASTER THAN CRYSTAL WAX, 
SLOWER THAN GABBRO) 

Fig. 8 Comparing signals from a source at the graben center. Top trace is for a 
graben filled with crystal wax (same as Fig. 7); bottom trace is for a graben 
filled with HPAL3. HPAL3 is faster than Crystalbond ("crystal wax"), but 
slower than gabbro. Source-receiver distance is 200 mm. Vertical scale is 
100 mV per division. 
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5.2 Source in Graben, Of f-Center 

Figure 9 shows signals obtained when the source is actuated in the graben in 

various off-center positions. The relative position of source and receiver is shown sche- 

matically in plan view beside each trace. In each case, the source is actuated along a 

diameter, halfway between the center and the rim of the graben. (It is easy to see that 

this is as if the source were kept in one of the three positions, and the receiver were 

moved around.) Clearly, an off-center source produces a radiation pattern. Both the 

shape and amplitude of the signal depend on the relative position of source and 

receiver. The trace with the largest amplitude has a maximum peak-to-peak amplitude 

about twice as large as that with the smallest amplitude. These results are fairly easy to 

rationalize in terms of simple focusing. When the source is excited in the off-center 

position furthest from the receiver (Fig. 9, top trace), a larger portion of the boundary 

between the graben and the rest of the medium is illuminated in the direction of the 

receiver. 

Figures 10 through 12 show the off-center signals in each of the three positions 

just discussed, for different fill materials (again, Crystalbond 5(W and HPAL3). The 

effect on amplitude of the different fill materials appears to be accentuated in the off- 

center cases. 

5.3 Voiceprints 

Figures 13 and 14 show an interesting presentation of the data. What is shown 

is a "voiceprint" of the data for the source on a halfspace (Fig. 13), and the data for the 

source in the graben center when the graben is filled with Crystalbond 504 (Fig. 14). 

The voiceprint is obtained by filtering the traces with different bandpass fil- 

ters, and plotting the results in order of increasing center frequency of the bandpass fil- 

ter. In this case, the filters have a passband of 200 kHz, and the increment in center fre- 

quency between traces is 40 kHz. Thus, the bottom trace shows the data filtered from 0- 

200 kHz (center frequency 100 kHz), the next trace up shows the data filtered from 40- 

240 kHz (center frequency 140 kHz), the next trace after that shows the data filtered 

from 80-280 kHz (center frequency 180 kHz), etc. What results is essentially a fre- 

quency-time plot. (Note that the traces are also rectified and low pass filtered, to avoid 

spurious wiggles resulting from the increasing center frequency of the bandpass filter.) 

10 
C8682D/sn 



< 1111111111 

yr^rrr'nri>i'.fy<^yy>-ri 

20 

TIME,   \iSEC 

t    <    I    ■    I    r   ■ UI    i    ■    i '<    i    i    t    i    i    <    i    i    i    •    i    i    it    i 

i i i i i < i i • i i i i > i ■ i t . i . i • ■ i ■ • i > i > i • i > t > i . t  

..u 
j^VKW^WiVrxKVy^",' 

^ 

:   20 .. 

TIME,   jiSEC 

:Y^ 

R 

A/vvA^^--vu•,/VSt"■"A""," ;7^A/»| 
: 

I 111111111 i I) I • 11111 • 111 I 

Vi^^rW^V'H'H^.'W^'^A-. [ 

20 
i ■ 111 < • • i < i • < ■ •«i • i«11. > > ■ < < 

TIME,   JiSEC 

Fig. 9 Signals from sources actuated off-center in a graben filled with Crystalbond 
50/f ("crystal wax"). Each trace is accompanied by a plan view showing the 
relative positions of source and receiver. Distance from graben center to 
receiver is 200 mm. Vertical scale is 200 mV per division for the two top 
traces, and 100 mV per division for the bottom trace. 
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Fig. 11 Signals for one of the off-center positions in Fig. 3, for a graben filled with 
Crystalbond 50^ ("crystal wax") and a graben filled with HPAL3. Distance 
from graben center to receiver is 200 mm. Vertical scale is 200 mV per 
division. 
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Fig. 12 Signals for one of the off-center positions in Fig. 9, for a graben filled with 
Crystalbond 504 ("crystal wax") and a graben filled with HPAL3. Distance 
from graben center to receiver is 200 mm. Vertical scale is 100 mV oer 
division. K 

14 
C8682D/sn 



N 

Ü 

HI 
D 
O 
III 
DC 

900 

700 

500 

300 

100 

i 1 1 1 1 r 

20 419 60 8(9 

TIME, H-sec 

Fig. 13 "Voiceprint" of the halfspace signal shown in Fig. 6. Each trace in the voice- 
print represents the signal filtered by a bandpass filter with a bandwidth of 
200 kHz. The increment in center frequency of the filter is ^0 kHz as we 
move from the bottom trace upwards. Thus, this is a time-frequency diagram. 
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Voiceprint similar to that in Fig. 13, but this time for the signal of Fig. 7, the 
signal from the source actuated in the graben center when the graben is filled 
with Crystalbond 504 ("crystal wax"). 
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Examination of the voiceprints shows that although the low-frequency levels 

are quite similar between the two cases, the case with the source in the graben has con- 

siderably more energy in the higher frequency range, from 500 to 700 kHz center fre- 

quency. Considering that 100 kHz in the model is roughly analogous to 20 s in the Earth, 

this 500 to 700 kHz range corresponds roughly to 3 or 4 s in the Earth. 

6. The Yucca Flat Model 

We have constructed an accurate scale model of Yucca Flat, based on the 

generalized map shown in Fig. 15, which was constructed from the work of Ferguson et al 

(1986). The rectangular box outlines an area where many nuclear explosions have been 

detonated (see, e.g., McLaughlin et al, 1986). The basin was drilled in a fine-grained 

gabbro halfspace and filled with Crystalbond 50^ (Aremco Products, Inc.). The properties 

-ST 15' 

-37,'07■30■• 

-37" 00' 

0 B 10 
KILOMETERS 

YUCCA FLAT, NEVADA 
DEPTH CONTOURS IN METRES 
PALEOZOIC - TUFF CONTACT 

I 

11B,B2'30" 
+ 

+ 

+ 

Fig. 15 Generalized map of Yucca Flat used in constructing the physical model. Map 
was drawn based on the work of Furgeson et al (1986). Large rectangle 
delineates area where many explosions were located. 
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of the gabbro and Crystalbond are given in Table 1. The source is excited on the surface 

of the basin and receivers are placed outside the basin on the halfspace, as shown in Fig. 
16. 

1 mm in the model represents 1 km in the Earth. If the material filling the 

basin in the Earth has a Rayleigh wave velocity VR = 1.2 km/s, then a 20 s Rayleigh wave 

in the Earth has a wavelength of 24 km. Thus, the analog of the Earth's 20 s Rayleigh 

wave has a wavelength of 24 mm. Given that the basin fill material has a Rayleigh wave 

velocity of 1.01 km/s, this corresponds to a frequency of about 40 kHz. Thus, in this 

scale model of Yucca Flat, a 40 kHz Rayleigh wave corresponds roughly to 20 s Rayleigh 
wave in the Earth. 

PLAN VIEW OF MODEL 

RECEIVER POSITIONS -i 

45° 

34 mm 

SOURCES                 ^ vV        \      /\ 

EXCITED i\\/^-V^^' 
ON SURFACE        —r^^Cix \ 
OF BASIN —^^' %\K \ ^  y ̂

 BASIN   \ 
FILLED    \ 
WITH       \ 

^ 

// CRYSTAL\ FINE-GRAINED 
(/ WAX          \ GABBRO 

\ 
HALFSPACE 

-  _ .     . ._.   _ 

Fig.  16    Overall geometry of the model.    "Crystal wax" refers to Crystalbond 504 
(Aremco Prods., Inc.) 
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6.1 Source Excited Within the Scale Model of Yucca Flat 

Figures 18-21 show the waveforms obtained when the source was excited on 

the surface of the basin. For comparison, Fig. 17 shows the waveforms obtained when 

the source was excited in the gabbro before the basin was excavated. In each case, the 

receiver positions are identical - 200 mm from the same reference point in the basin (the 

same point as the source position in Fig. 20). 

The figures are meant primarily to illustrate waveform character; they should 

not be used as an accurate guide to arrival times. Arrival times are not completely reli- 

able because of triggering problems in the apparatus, which we have subsequently 
rectified. 

Examination of Figs. 18-21 yields the perhaps rather surprising result that the 

presence of the basin does not seem to be making much difference in the shape of the 

waveform.    When the source is anywhere within the rectangular box representing the 

location of many actual explosions (Figs. 18-20), the waveforms appear almost like half- 

l space responses.   There does appear to be some complexity and ringing, but nothing like 

i what is observed in the case of the cylindrical plug graben.   The loss of symmetry in 

i going from  a cylindrical  plug graben  to a more realistic structure seems to have 

dramatically reduced the focusing effects. 

The only case where relatively dramatic effects on the waveshapes is observed 

is shown in Fig. 21, when the source is excited over the deepest portion of the graben. 

f Here, we see some of the same kind of complexity and ringing observed in the cylindrical 

i plug graben.   This is not difficult to rationalize, because the structure at this position 

| locally approximates a plug or bowl-like structure. 

6.2 Spectral Ratios 

; Figures 22 and 23 show some spectral ratios for the data in Figs. 19 and 21. At 

[ each position, the magnitude spectrum of the waveform obtained with the source excited 

j on the basin surface is divided by the magnitude spectrum of the waveform obtained 

through the gabbro before the basin was excavated. If the spectral value of the denomi- 

nator is too small (5% or less of its maximum value), the ratio is set to zero. Thus, we 

obtain some notion of the effect of the structure on the wave propagation. 
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Fig. 17 Waveforms obtained on the gabbro halfspace before the Yucca Flat model was 
excavated. Vertical scale is 50 mV per division. Horizontal scale is 50 ps per 
division. 
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Fig. 18 Waveforms obtained from sources excited on the surface of the basin. The 
point "X" in each case is the reference point - ail receivers are 200 mm from 
this reference point. The dot with the rays coming out of it indicates the posi- 
tion of the source in each case. In each case, the vertical scale is 20 mV per 
division, and the horizontal scale is 20 us per division. 
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Fig. 20 Waveforms obtained from sources excited on the surface of the basin. The 
point "X" in each case is the reference point - all receivers are 200 mm from 
this reference point. The dot with the rays coming out of it indicates the posi- 
tion of the source in each case. In each case, the vertical scale is 20 mV per 
division, and the horizontal scale is 20 ys per division. 

22 
C8682D/sn 



I^V^;^ 

^lifeÄ 

Fig. 21 Waveforms obtained from sources excited on the surface of the basin. The 
point ,IXW in each case is the reference point - all receivers are 200 mm from 
this reference point. The dot with the rays coming out of it indicates the posi- 
tion of the source in each case. In each case, the vertical scale is 20 mV per 
division, and the horizontal scale is 20 ys per division. 
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The spectral ratios indicate that the structure seems to be causing some amp- 

lification of high frequencies, above ^00 kHz, relative to the lower frequencies. The 

spectral ratio for frequencies lower than 'fOO kHz is .generally close to 1 or 2. For fre- 

quencies higher than ^00 kHz, in the case when the source is within the rectangle in the 

northern part of the basin, the spectral ratio reaches a maximum of about 5. In the case 

when the source is located to the south, above the, deepest portion of the basin, the spec- 

tral ratio in the high-frequency portion can be as high as 20. Remembering from Section 

6 that a 40 kHz Rayleigh wave in the model is analogous to a 20 s Rayleigh wave in the 

Earth, we see that the amplification is occurring for waves analogous to ones with 

periods of 2 s and shorter in the Earth. 

In both cases, the direc, ins of greatest amplifications of high frequencies 

appear to lie in the southeast and the northwest. 

7. Conclusions 

We have described experiments intended to clarify seismic wave propagation 

from sources actuated in graben-like structures. We have studied two models, an ideal- 

ized cylindrical graben and a scale model (1 mm to 1 km) of the Yucca Flat basin exca- 

vated into a halfspace of fine-grained gabbro and filled with low-velocity material. 

Ultrasonic waves were excited on the surface of the model basin using a break- 

ing pencil lead as a source; this source represents a step-function point unloading of the 

surface. The waves have been monitored using a true displacement conical transducer 

placed on the gabbro halfspace outside the basin, 200 mm away. Rayleigh waves of W- 

120 kHz in the model correspond roughly to Rayleigh waves of period 20 s in the Earth, 

depending on the model and the fill material. 

Fir-it, we made measurements setting the source off on the halfspace (made of 

gabbro, with V- = 6.2 km/s), and within a cylindrical "graben" of 13 mm diameter and 

2 mm depth. The graben was filled with either Crystalbond 504' (Vp = 2.407) or HPAL3 

(VD = 3.287). The presence of a source region with significantly slower velocities than 

the surrounding region appears to lead to a more complex signal, with more "ringing" 

than would be apparent if there were no such source region. The presence of such a 

source region appears to result in a relative amplification of the high-frequency part of 

the signal.  The frequencies analogous to 3-10 s in the Earth appear to be amplified rela- 
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tive to lower frequencies. When the source is set off in the graben in an off-center posi- 

tion, a radiation pattern is established, with amplitude varying by a factor of 2 or more. 

Material effects appear to be accentuated when the source is excited off-center. 

In the case of the more realistic scale model of Yucca Flat, the presence of 

the basin was also found to have an effect on the waveforms obtained. Some ringing and 

complexity are introduced into the waveforms, compared with waveforms obtained on a 

halfspace without a basin present. However, the effects are less dramatic than those 

observed when sources are excited on a model basin which is perfectly cylindrical in 

geometry. The most complex waveforms are obtained when the source is excited over 

the deepest portion of the graben. Here, we see some of the same kind of complexity 

and ringing observed in the cylindrical plug graben. When the source is anywhere within 

a rectangular box, representing the location of many actual explosions (Figs. 18-20), the 

effects are much less pronounced; the waveforms appear almost Uke halfspace responses. 

The presence of the basin can cause some amplification of ..igher frequen- 

cies. Frequencies higher than about WO kHz, which correpond roughly to periods of 2 s 

or shorter in the Earth, appear to be amplified relative to lower frequencies. This effect 

is most pronounced when the source is in the southern portion of the basin, as compared 

to the case when it is in the northern portion. The data also suggest an additional 

enhancement of this effect for wave propagation directions to the northwest or 
southeast. 

In the real Earth, Yucca Flat is not embeuded in a homogeneous halfspace, but 

in a more complex multilayered structure, and this may have a significant effect on 

seismic waveforms. It would be beneficial to conduct experiments involving grabens 

embedded in multilayered structures. 

Clearly, a breaking pencil lead is a different source from a nuclear explosion, 

and although it is well characterized and useful in experiments such as these, it is not an 

exact model of a bomb. Thus, some caution should be exercised in the interpretation of 
these results. 
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